THEORY OF THE KENNICUTT-SCHMIDT LAW FOR STAR FORMATION IN GALAXIES

MARK KRUMHOLZ & CHRIS MCKEE

ApJ 630, 250 (2005)

Workshop on the Kennicutt-Schmidt Law UCSD 12/18-19/2006

REQUIREMENTS FOR A THEORY OF THE KS LAW

Two forms consistent with observation:

 $d\Sigma_*/dt \propto \Sigma_g^{1.4}$ $d\Sigma_*/dt \propto \Sigma_g/t_{dyn}$

Applies over 8 orders of magnitude in star formation rate $d\Sigma_*/dt$ from normal galaxies to starbursts

Star formation inefficient: gas depletion time \gg dynamical time t_{dyn}

Previous theories

Padoan (1995): Predicts SFR in turbulent GMCs, but no prescription for application to galaxies in which GMC properties are not observed

Silk (1997): SFR set by supernova feedback; depends on uncertain porosity of hot gas

Tan (2000): SFR set by cloud-cloud collisions; normalization set by comparison with obs.

Kravtsov (2003) & Li et al (2005): simulations show fraction of high-density gas $\propto \Sigma_g^{1.4}$ but definition of "high-density" arbitrary and rate of SFR not determined

Elmegreen (2002, 2003): SFR/volume = $\varepsilon_{core} f_c (G\rho_c)^{1/2} \rho$ with $\varepsilon_{core} = 1/2$ Fraction of gas in dense cores, f_c , determined from observed KS law Corresponding density is $\rho_c / \rho = 10^5$, but it is not clear why this is the critical density, nor how it should vary in different galaxies

TURBULENCE-REGULATED STAR FORMATION (KM05)

Assume (1) that star formation occurs in GMCs

 $d\Sigma_{\star}/dt = SFR_{\rm ff} \Sigma_{\rm GMC} / t_{\rm ff}$

= SFR_{ff} $f_{GMC} \Sigma_g / t_{ff}$

where t_{ff} is the free-fall time in a GMC

 $SFR_{\rm ff}$ is the fraction of gas that goes into stars per free-fall time

f_{GMC} is the fraction of gas in GMCs

 $\approx (1 + 0.025 / \Sigma_{g,2}^2)^{-1}$ from Rosolowsky & Blitz (2006), where $\Sigma_{g,2} = \Sigma_g / 100 \text{ M}_{\text{sun}} \text{ pc}^{-2}$

Objective: Determine SFR_{ff} and t_{ff} in terms of Σ_q and t_{dyn}

The Star Formation Rate per Free-Fall Time SFR_{ff}

Assume (2) that the probability distribution p(x) of the density in GMCs is log normal as is appropriate for supersonically turbulent gas (e.g., Padoan & Nordlund 2002)

Let $x = \rho/\rho_0$ where ρ_0 is the average density in the GMC

Then dp(x) $\propto \exp \left[- (\ln x - (\ln x)^2)^2 \sigma_0^2 \right]$

where $\sigma_0^2 \approx \ln(1 + 0.75 \, \text{m}^2)$ and $\text{m} = \sigma/c_s$ is the Mach number

Assume (3) that gas above some critical density ρ_{cr} forms stars with an efficiency ε_{core} at a rate corresponding to some number (ϕ_t) of free-fall times:

 $dM_*/dt = (M \epsilon_{core}/\phi_t t_{ff}) \int_{xcr} x dp(x)$

where $x_{\rm cr} = \rho / \rho_{\rm cr}$

 $\Rightarrow SFR_{ff} = (\varepsilon_{core}/\phi_t) \int_{xcr} x \, dp(x) \qquad (can be evaluated analytically)$

For numerical evaluation, we take $\varepsilon_{core} \approx 1/2$ (Matzner & McKee 2000)

What is the Minimum Density for Star Formation, ρ_{cr} ?

Assume (3') that stars of average mass form in cores dominated by thermal, not turbulent pressure --- valid in Galactic GMCs

Sonic length: Scale at which turbulent motions match thermal motions:

Line-width size relation $\sigma_l = c_s (l / \lambda_s)^{1/2} \implies$ $\lambda_s = 2R (c_s / \sigma_{2R})^2 = 2R / \mathcal{M}^2$ where 2R is the diameter of the GMC

Gravitational collapse possible in a thermal core only if the sonic length > Jeans length (see Padoan 95; equivalent to mass inside sonic length > ~ Bonnor-Ebert mass)

Can show this implies $\rho_{\rm cr} = 0.8 \alpha_{\rm vir} \mathcal{M}^2 \rho_0$

where $\alpha_{vir} = 5\sigma^2 R/GM \sim 1$ is the virial parameter

Notes: (1) this corresponds to $P_{cr} = \rho_{cr} c_s^2 \approx \rho_0 \sigma^2$: the critical thermal pressure is comparable to the turbulent pressure in the GMC (Padoan 95)

(2) low-mass cores have $\alpha_{vir} \sim \mathcal{M} \sim 1$ and are therefore at the critical density

Evaluation of the Star Formation Rate per Free-Fall Time, SFR_{ff}

Recall SFR_{ff} = $(\epsilon_{core} / \phi_t) \int_{xcr} x \, dp(x)$

We now know x_{cr} and we adopt $\varepsilon_{core} = 1/2$

Vazquez-Semadeni et al. (2003) carried out hydrodynamic simulations and showed that the star formation rate depends on the sonic length. Fitting to their results gives $\phi_t = 1.9$ as the number of free-fall times (evaluated at ρ_0) required for core collapse.

A power-law fit to our results yields

 $\text{SFR}_{\text{ff}} \approx 0.017 \ \alpha_{\text{vir}}^{-0.7} \ (\mathcal{M}/100)^{-0.3}$

 \Rightarrow

Star formation is inefficient (a few percent), in agreement with observation. The rate depends only weakly on the Mach number \mathcal{M} ; note that $\alpha_{vir} \sim 1$ in GMCs

New Form of the KS Law

We now have $d\Sigma_*/dt = SFR_{ff} f_{GMC} \Sigma_g / t_{ff}$ = 0.017 $\alpha_{vir}^{-0.7} (\mathcal{M}/100)^{-0.3} f_{GMC} \Sigma_g / t_{ff}$

What are the Mach number \mathcal{M} and the free-fall time $t_{ff} \propto \rho_0^{-1/2}$?

Assume star-forming disk is marginally stable so that $Q \approx 1$ $\Rightarrow \sigma_g = \pi G \Sigma_g Q / 2^{1/2} \Omega$ in disk, where Ω is the angular velocity

Density in the disk is given by $\rho_g = P_g / \sigma_g^2$ where $P_g \approx (\pi/2)G \Sigma_g \Sigma_{tot}$

Pressure in GMC \approx (2-10) P_g and density in GMC \approx (2-7) $\rho_g \Rightarrow \sigma_{GMC} \approx \sigma_g$ and t_{ff} $\propto \rho_0^{-1/2} \propto \Omega$ (details in KM05)

 $\Rightarrow d\Sigma_*/dt \approx 0.16 \mathcal{M}^{-0.3} f_{GMC} \Sigma_g \Omega$ similar to KS law except for $\mathcal{M}^{-0.3}$

 $\approx 9.5 \text{ f}_{\text{GMC}} \Sigma_{\text{g},2}^{0.7} \Omega_6^{1.3} \text{ M}_{\text{sun}} \text{ yr}^{-1} \text{ kpc}^{-2}$, where $\Omega_6 = \Omega \times 10^6 \text{ yr}$

Star Formation Threshold

Star formation cuts off in outer regions of galaxies Generally attributed to Toomre Q rising above 1 => stable

Predicted SFR varies as Q^{-1.3} f_{GMC} : declines rapidly in outer regions since Q increases and the molecular fraction decreases; in addition, a smaller fraction of the molecular gas is in GMCs at large radii.

Test of New Form: $d\Sigma_*/dt \approx 9.5 f_{GMC} \Sigma_{g,2}^{0.7} \Omega_6^{1.3} M_{sun} yr^{-1} kpc^{-2}$

Should apply to individual galaxies as well as sample of galaxies

Does not apply to individual GMCs since expect large fluctuations in the star formation rate (Krumholz, Matzner & McKee 2006)

Milky Way: use f_{GMC} and $\Sigma_{g,2}$ from observation calculate Q(r) in spiral arms (suppressed in above expression)

Predict SFR between 3 and 11 kpc of 4.5 M_{sun} yr⁻¹

Consistent with observed rate $\approx 3 M_{sun} yr^{-1}$ (McKee & Williams 1997)

Comparison with Classical Forms of KS Law

There are two forms of the KS law because Σ_g and Ω are correlated in the data:

$$\Omega_6 \approx 0.06 \Sigma_{g,2}^{0.5}$$
 for $\Sigma_g > 1 M_{sun} \text{ pc}^{-2}$

First form:

Observed: $d\Sigma_*/dt = 0.16 \Sigma_{g,2}^{1.4}$ $M_{sun} yr^{-1} kpc^{-2}$ (Kennicutt 1998) Theory: $d\Sigma_*/dt = 0.19 f_{GMC} \Sigma_{g,2}^{1.3}$ $M_{sun} yr^{-1} kpc^{-2}$

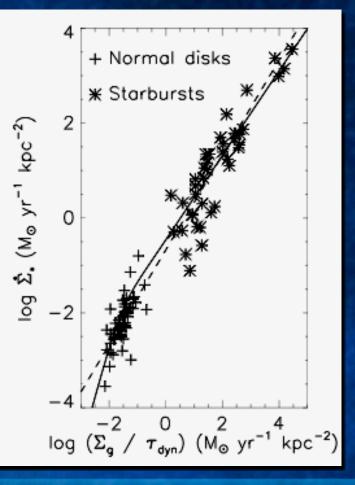
Second form:

Observed: $d\Sigma_*/dt = 1.7 \ \Omega_6 \Sigma_{g,2}$ $M_{sun} \ yr^{-1} \ kpc^{-2}$ (Kennicutt 1998) Theory: $d\Sigma_*/dt = 3.2 \ f_{GMC} \ (\Omega_6 \Sigma_{g,2})^{0.9}$ $M_{sun} \ yr^{-1} \ kpc^{-2}$

Comparison with Second Form of KS Law

 $\tau_{dyn} = 4\pi / \Omega$

- --- Power-law fit (Kennicutt 98)
- Theory



Tests of Theory

OBSERVATIONAL:

* Test SFR_{ff} from observations of a sample of GMCs

* Test $d\Sigma_*/dt$ in annular rings in galaxies

* Increase the sample size to break the degeneracy between the two forms of the KS law and between observation and theory

THEORETICAL:

+ Predicts time scale for star cluster formation of 3-4 dynamical times, consistent with observation (Tan, Krumholz, & McKee 2006)

+ When used in a dynamical model for GMC evolution, successfully predicts GMC lifetimes and column densities (Krumholz, Matzner, & McKee 2006)

Extending the Theory

* Determine the GMC fraction f_{GMC} theoretically Particularly important for low-metallicity galaxies and high-redshift galaxies

* Determine the effects of magnetic fields Could alter density PDF and slow rate of star formation Observations of fields in the Galaxy suggest effects are modest

* Predict the level of turbulence in GMCs (i.e., predict α_{vir}) Understand the driving mechanisms that counter turbulent decay Particularly puzzling in starbursts, where σ larger than given by plausible momentum sources other than self-gravity

* Show how the massive stars that are observed are related to the low-mass stars predicted by the theory (i.e., understand the IMF)

These are some of the fundamental questions of star formation

CONCLUSION

The assumptions that

- Stars form in virialized GMCs that are supersonically turbulent
- The density distribution is log normal, as expected for such turbulence in isothermal gas
- Gas dense enough that thermally supported cores that are gravitationally unstable forms stars with an efficiency $\varepsilon_{core} \sim 1/2$

imply a star formation law that should apply when averaged over a large number of GMCs, whether in a single galaxy or many galaxies:

 $d\Sigma_*/dt \approx 9.5 f_{GMC} \Sigma_{g,2}^{0.7} \Omega_6^{1.3} M_{sun} yr^{-1} kpc^{-2}$

This result is consistent with existing observations